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GROT >-INVARIANT SOLUTIONS OF HYDRODYNAMICS
AND RADIATION HYDRODYNAMICS

Stephen V. Coggeshall
Los Alamos National Laboratory, Los Alamos, NM 87545 USA

Using the property of invariance under Lie groups of transformations, the equations of hydrodynam-
ica are transformed fiom partial differential equations to ordinary differential equations, for which special
analytic solutions can be found. These particular solutions can be used for (1) numerical benchmarks, (2)
the basis for analytic models, and (3) insight into more general solutions. Additionally, group transfor-
mations can be used to construct new solutions from existing ones. A space-time projective group is used
to generate complicated solutions from simpler solutions. Discussion of these procedures is presented
along with examples of analytic solutions of 1, 2 and 3-D hydrodynamics.

1. Introduction

The construction and use of large-scale hy-
drodynamics codes is an integral part of the ef-
forts at many organizations internationally. A
fundamental requirement for such codes is to ad-
equately calculate simple test problems for which
the exact solution is known  Such benchmark
problemis are therefore a basie need for any groups
developing nontrivial numerieal codes,

Since many processes in which organizations
are interested require at least the solution of hy-
drodynaniies equations, nontrivial henchmark prob
lems to such equations are important.  In the
past, many 1-D test problems have heen used,
but there has been a lack of multidimensional (2
and 3 D) nontrivial analytic salutions. Often, n
1. problem has been runan a 221 mode, whiech
dors not test n wide variety of physical/numerical
Presented here are a number of 2 and
3 D analytie solutions to the hydrodynamice equa

'lr(H'l'HHf‘S

tions that may wnmediately be used ns bench
marks The solutions were found using e group
methods for the reduction of partinl differential
equations; detals of this method ean be found in
the texts hated o Reference )

The use of Lie groups to sunphfy /rolve differ
entinl equantions hns engoved renewed populenty
By adentifyig the con
tinu us transformation groups under which the

i the last few decades

cqua’s ns remain invatiant, new sels of coords
natex ean he pdentified under which the equations

became mimpler  Ordiary diflerential equations

(ODE’s) undergo a reduction of order and partial
differential equations (PDE's) experience a reduc-
tion in the number of independent variables until
they become ODE’s.

2. Mod¢l

In this work the equations for one-temperature
inviscous hydrodynamics are considered. A re-
striction to a perfect gas equation of state is made,
80 the material pressure and energy are written

g ..
P=rpl, F=——T,

4 -1
where I'is the gas constant, 4 is the adiabatic ex-
pouent and 7' is the matenal temperature, (Use
of a more general equation of state, including n
power law formn, for the 1. D case ean be found in
Refrrence 2) Heat conduction is included in the
diffusion approximation, where the Leat flux F
in represented through a nonlinear Fourier's Law,
F= & T)VT. A general energy sourcee terin
Six. . p,u,T) ik also included

With these assumptions, the equations of nus,
momentum, and energy conservation hecomne

feta-Vp g p¥Uou- 0,
win-Yui —l—\'(l',n'l')- 0,
/)

(1)
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The 3-dimensional velocity is writien asu = (u, v, w).

We look for continuous transformations which
leave these equations invariant by introducing tue
differential operator

PN LN T NPT AL

U=l O e+t s,
u 0 v 0 w T 4

ettt o
where each of the functions € and n* depend
only on the independent variables r, y, 2, t, and
the dependent variables o, u, v, w, and T. This
operator is exiended to action on the derivatives
in (1) through prolongation formulas described
in all the texts listed in Reference 1. Invariance
of these equations is invoked by demanding that
U operating on these equations gives back some
arbitrary function times the original equations,
which says that the equations are invariant on
the solution manifold. These invariance condi
tions provide relations to determine the unknown
functions £* and the pt.

The Lie groups of point transformations un-
der which Equations (1) reminin invariant are gen-
erated by the operntors

d
U, = :E = (0,
1, - d,.
', da.,
Uy - o,
Ugr = 1, O

l'(,'v — H’v ] ”. .
[ TS (L 'Y

Uyy - o wil 4 2y vy udh,
Uyo- 0 cdy vl w4 oed,
U~ 20, 0 20w, wdd,.
Ve - 1y uddy, vy wid, 210y,
Us  xdy byl 42 qpdi,
Aouch, boedh o voudy, 4Ry,
{ '-,- i'"',- .
Uy oty gty 4 st 120y gptd,
V(r w4 by o), v w2y,

with the followimyp condhinone for the conductivaty

x and energy source S:

pxp(a,, — qa,, — gtay) + 2T'nr(a,, — a, - tay)
=a,, —a, +(2 - q)a,, — qapt,
US - S(2a,, — da,, — 4ta;)

T +2
- gqap (7—2——) =0.
7=l q

(2)
The complete invariance operator is a linear com-
bination of the scparate operators,

U=a,l'y +a,U, + ..+ a,,U,, +a,U,,

where the a,’s are arbitrary constants,

These groups represent space translations ({/,,
U,. U,). time translation (I/¢), Galilean boosts
(Uge. Yay. UG, rotations (I'yy, Uy, U,r), space
scaling (U,,), time scaling ([/,), density acaling
(I,,), and a space-time proj=ctive group ({/p).

For the remainder of this work both heat con-
du~tion and the energy source S are neglected.
The conditions for the inclusion of these terms are
given by (2), and several 1-D) analytic golutions
including heat conduction ar~ given in Reference
4. ‘There is no problem finding similarity solu-
tions to multidimensional hydrodynamics with ei-
ther conduction or the source term retained. It
is, however, much more diflicult to solve analyt-
ically the reduced ordinary differential equations
with these terms included. Numerical solutions
of these ODE's are straightforward.

3. Reduction to ODE"a

Consider an example PDVF H(r,, y,,...) = 0
with nindependent variables x and 1w dependent
variables 'y which is invanant under « difleren
tial operator 17 = Y760, 4 Y. pdy,. That s
U'H = O whenever - 0. Sinee {7 as a hinear
dilferentinl operstar, we know (by the method of
charneterinticn) we can rewypite N () in terims
of the «
charactenistic equations

I b mroitegration constants ¢, of the

:h-,_ ) _ (I_J':,_ _ 4_!3_, _ ) dyn
(l Eu m S Wers
Thos N O hecomes Gley, ey pm) 0 O, and

the number of independent viarinhles has been re
dured by one



The use of the integration constants from the
invariance characteristic equations as new vari-
ables is seen as the identification and introduction
ol a new “preferred” coordinate system indicated
by the symmetries of the differential equations.
For PDE’s with two independent variables a sin-
gle such transformation reduces the equations to
ODE’s. To reduce PDE’s with n independent
variables to ODE's, n—1 such reductions must be
made. These multiple reductions are facilitated
by examining the structure of the associated Lie
algebra Specifically, after we perform the first
of several reductions, we wish the resulting equa-
tions to retain the symmetries of the groups used
in the first step so that the process can be con-
tinued. This is guaranteed through the following
theorem: If a differential equation A is invari-
ant under a Lie group ¢ with a normal subgroup
S € G, then the reduced equation A/S oblained
using the group S will be invariant under the guo-
trent group GG/S. Complete description as well as
examples of this procedure can be found in Rel-
ercnce 3.

To illustrate this procedure we consider the
two-dhunensional axisyinnetrie simplification of
Fquations (1). We work in spherical coordinates
with independent variables v, 8, and ¢, and let u
and v be the r- and @ components of the velocity,
respectively. We choose two subgroups allowed in
this geometry for a double reduction, using first
UV = Uy al’y, and then ' = U, 4+ 80,,,
where o and 3 are nrbitrary constants, for the
two reductions. We identafy UV = w10, 4 (70, 4
plo= 300,04 (r = ut)dy - vtdy, = 2176 and 177 -
rdy 4 op(d B)0 4 wdy 4 iy 4 200 We do
not need to ealenlate the differential equations
obtaimed with the first reduction, we can proceed
to find the mvanants of hoth 171 and 1772 and do
the double reduction in one step

The chatactenstie equations for ' are

dr o) dr (I;'

[ TR T P T
du dh il
Y Y Y

The mtegration constants of these equations ape
the new varihles
r -
ey - ey ey I""""/'- cqouloor,
f

[0S ol ty. ' f.l

Since U! is a normal subgroup of U?, we are
assured that the equations obtained by reducing
with U! will inherit tl.e property of invariance
under U2, and a further reduction is then possi-
ble. We can therefore write 1’2 in terms of these
new variables as U? = f,8,, + ... + feO.,, where
the functions f; can be calculated from f; = U?e,.
We find U? = €18,, +¢3(A--3)0c, +€40c, +c58:,+
2¢68.,, with the characteristic equations

dey _dey o de  des _ dos
a6 0  aa(B-3) 7 e T s 2

The integration constants of this set of equations
beconie the new similarity variables:

3-A48 aft ut?
A=0.H(A) =pri="te ,(/(A):T—l,

, v? e
V() = -6 =TT

The final step is to transform the original
PDE’s into ODE’s in these new variables. Using
the cliain rule, we calculate the derivatives re-
quired m (1) in terms of the new variables E.g.,

ad -3,-H_-a
m= (Tl [H(,\)ra' Pe /']

. j
= pf- A elty=n [nl‘—; - M’T + u',\.] .

For this case Ay = 0 since A = 6. When these
expressions are substituted into (1), the equations
beeome ODF's for H(A), U(A), V(A) and ((Q).
Any solution of these ODE's provides a particular
solution to (1)

4. Analytic Solutions

li tins wection are hsted a pumber of ana
lytic solutions to the ordinary differentinl egun
tons found by using vanious sinnlarity reduetions
That work hsted o
il and complete met of minnlanty reductions

described o Reference 3

for 2D axiwymmetne geometry, taking the par
tind hifterentind equations into ordinary differen
tinl eqnatins ‘The present Solutions | 7 are
apectfic solutions telated (o this previons work,
and thev relntionship and methad of solntion of



ihe reduced ordinary differential equations are
listed here.

Each analytic solution gives the material prop-
erties (density, velocities, temperature) as a func-
tion of space and time. Unless otherwise noted.
the velocities are always (u,v,w) = (u", u’, u%),
being radial, theta and phi velocities in standard
spherical coordinates. The variable r is the spher-
ical radius and R is the cylindrical radius.

2-D axisymmetric flow, (r,0) or (R, z):

Solutions 1 - 4 come from N; with the ansatz
U = Up(a + becos?@), V' = Visinfcosd.

1. B# -2+ Vy=0,ally=0:

p(r,0.1) = pot XA+ v+ D) (rcusﬂ)ﬂ

u(r,0,() = Gt HEN)&:O
(r.0,1) LELNP
w"r,o, = —m—————sintcos
(h+ 1)1
. 207 -1) Yy
0.1)= - - s
7(". .I) l‘(') " l)"(,‘i+'2) (f) COS

DAL b Ve Oally = L

e 0 1) = pat AN DD e ?

~

P
w(r 1) - - (l :l7—--.-...-.’(l)
\ s

7 - Ur
v(ir 1) o d—— —anfleont?
T4 1t

~

T(r. 0.1}

Gy 1) 4) (" :

Uy 4 151 2) 7) con’f

3o 2oaly 0
plrt ) pot” T ooy
r "
ule, 0.1 Ceont
l(l ) ’cn

r
v(r, 0.1) - ‘-.NIH”(II.NH

T(r 0.1) 'I;,(;')"(.u...m‘ Vo)t

4 8=-2,allp = 1.

p(r.0,1) = pot?C=Mr=2 (5inf) "4 (cos8)?~ 27
u(r,60,t) = Tr(l ~ cos?f)

v(r,8,1) = Esinﬂcma

T(r,6,1) = To ({)2 (sin0)*~?" (cosf)?1?

5 My with the ansatz A = 0):

p(R,z,t) = poexp (ot + gz — a[?l"')
(R ;0 =0,

YRy = =2

u' (R, z,1) = ﬂ+2ul

2
TR, :.t) = T%

6. H,4 with the ansatz [/ = (:

p(r 0.'} = p“r'l['”“ : 7“'*‘)]/(7—1)(&.""(,)—7/(7-01)
ulr 0,.t) =10

v(r. ft) = l'u"ll (hill”)“_”/“ i)

41 = I g-n ,
T(r 0.1) = l'{,—zl—‘:-r'" (.“"”)(l ANVARERR!

-]

4 with the ansoty {7 = Pyeosl, Vo= Visinf
plro0 0y per I ”(Mlll')”"'h'/”‘ "
u(r. 0.1) = uyeos!

1
v(r.6.1) - u‘,—----.)-mnﬂ
]

S0y D2 ] ,
T(r 0.1) 11(‘:!-—)—--—'—)-(_----_%----—)-Mnl{)

Wy
Next oare presented nnnly hie solntions i ge
First s 2D
cexhndnical geometrs o plane with no

ometnies ather than avsymmetnie
< (Il"ll‘ll
denee Followig that 1w » 3 D solution

2-D cylindrienl solutions (K $)
Here the pronpes ('In i "ll'nl | ","'.vu 4 ".Il.u'-
l"v foeal o n'..",',) were usedl tor penerate the



similarity variables
d
A= R p= H()\) (?) e, uf = U(A)L:-,

2
u® = V(,\)% T = G()) (R) .

T
8 7=2,e=0:
2
oR6.0=p(7)
uf(R,¢,1) = R

2
w(R.8.1) = v

2
T(R.¢,1) = i+ (_’i)

16T t
9.9=2,e=0:
(R $.1) = poRR~ (?)

uB(R.e.1) = -’;

b
w (R, ¢.t)=volt™! (?)

e} A
TR, ¢ 1) = ————— 7 ? | —
Ttht.e.0) l'(u-{-'ﬂl—d){ (f)
10

d--hf
plI @) = py (T) ek - co

I
ul(B.ot)= —

3
U‘A(“":,.’)__ —d 4 (2 d ”'!)/_.7__’;
¢
d (2 20 e
l(" o o — .r
Lol I'y2[( - V)af 4 2) 4 [y - d)t*

with « . T-)—_ A a/ry4 (d v 2)/y) - d]
!

> i - DS v 2) 4 Jby )
v

N " .,
['( "'.l.".l) o (;) f '(‘”’
W) It

{
wtilt.e )y 0

Tl b 1)

3-D solution, spherical coordinates (r,9, ¢):

For the 3-D reduction to ordinary differen-
tial equations, the groups (U, + c1U,, + €2Uzy +
esUsp Ust+eqU, s +esU, 0, Uy +c6U, ) were used,
which generated the similarity variables

A=8, p= HMtrbe®, o = U(»\)%,

r 2
u = V)T, vt = WE)DL T= G

12. V=0, H = Ho + Hy(sinf)®, c = 0, y = 5/3:

p(rvo| é,t) = f_(‘-'.3)/2".(p0 + p1sin°0)
r
u(r,0,¢,t) = ?’-

v(r.6.6.1)=0

w(r.0,¢,t)= %

T [ATTo(b 4 2) (sind)**?
4¢ po + p18in0
apo N a ]1/2
(po+ pisin®0)(b+2—-a)  (b-+2-a)

‘ (T \?[4TT, (sin0)**?
7(". ﬂn ¢|') - (4]") [ pPo <+ plsinao

- are + 1 ]
(po 4 pisin®@)b+2)(b+2—-a)  (b+2-a)

Figure 1 shows the material trajectories for Solu-
tion 12 with the choices a = 1 and b = 2.

-1 BN ° (I8 ] B 1
Mnaterial trajectonies for Solution 12
0, m b, a: 1,4 R

Fipure 1
with g



Another combination of groups (Uy, Ui+, Us,
+eUsy+ sl Uyy + oy +esl, ) produces the
similanty variables

A=6, p= HQ)r%e®, u" = U(2)rted?,

u = V(A)rted®, u® = W(A)rte®®, T = G(A)r?te?ds.

The use of time translation alone in one generator
creates a steady-state solution.

5. Extension of Solutions

Since the considered Lie groups of point trans-
formations are invariance transformations, they
transform solutions into other solutions. Given
any solution of (1), we can use the global group
transformations(3] to construct a further s=t of so-
lutions to (1) with various choices of the group pa-
rameters. For the axisymmetric case, the global
transformations for the allowed transformations
are

- ¢ar
r= ,
1 — st
é=0,
- egl
= -+ T,
1 - st

f=erey?p(l — ),
= eary '[u(1 - sf) + sr],

= ey, ll'(l — st),

T = ejer ¥I(1 = st)?,
with arbitrary coustants ¢,, s, and 7. Therelore,
if W(r.0.1) is a solution to (1), then so also is
V(r.0.0).

All these additiopal free parameters are triv
inl except for &, which is the projective group
parnmeter. The inclusion of & must be consis
tent with the conditions given iu {(2) (where s was
T (2 D axisym
metrie, no conduction or source) s 3 = /A4 This

called o), which for Solutions |

progective transformation can generate anontny
i) extension « 7 an existing, solution. Tt s useful
to exaunne the effect of this projective transfor
mmtion on simple 1 D solutions

We contider a1 D llow where the velority is
uowgr /o whieh gives e gt lor tae tragee
Many analvte 1 1) saln
tions of this form can be Tound, for example, i

tones of materal {low

Reference 4. Under the aclion of this projective
group these relations are transformed into

r 1
= () 3t r = ol e+ st e,
The value up = 0 (u = 0) is a trivial solution to
(1), and under the action of this projective group
becomes a nontrivial solution. Figure 2 shows the
effect of the projective group on this solution. For
ug = } this projective transformation is an iden-
tity transformation, so solutions with trajectories
shown in Figure 2b arc unchanged. An interesting
1-D solution, Solution 2 from Reference 4, has the
value ug = 1, 3/4, r 1/2 for planar, cylindrical,
or spherical geometries, respectively, for a y =5/3
material. For up = 1/2, the material trajectories
are shown in Figure 3a and the trajectories for
the corresponding projected solution are shown
in Figure 3b. As in Figures 2a and 2b, we see

r="rg

T -0 h { LILE ]

Figure 2a. Maternial trajectory with uy = U.

r=rylat + 11

i 7T 3 R
Figure 2h
transformation

Material trajectory after projective



r= rollllnlll + lI”2

=1 = ) v .5 )

Figure 3a. Material trajectory for up = 1/2.

that the projective group has introduced another
zero on the time axis. In Figure 3b we find a
bounded solution between times 1 = ~1/s and
t = 0. This solution begins with a point explosion
(like @ “Big Bang"), expands, turns around, and
collapses back into a point.

The transformations (3) can also be used in 2
and 3 dimensions to generate new solutions from
old ones. For example, Solution 2 becornes, under
the extension (3),

13. (2-D axisymnetric)

plr.6.1) = l’n(r(‘osﬂ)ﬁ(f — )" A-3H30H N= 1 (v 41)
x [es + s(t - -,—)]-3(f’+l)(1-1)/(-,+1)

u(r,0.t) = ear

s {[r — s /(29) - rg/(qs!)}

-1 o sr
1 -3 s-0 _—
( 1 )+r5+s(l—r)

Jen(y — 1Yrsinfcosf

v(r.f.1) =

'

s+ D {lr =7 /e - )

2 600 - 1(2-9)
ST+ )+ 2)

os?f

T(r,0,1)=r

2

with a(7 - h/3) = 0 (Note, ey is not necessary
here, We could let & =
by 1))

The 3 D solution ean also be extended in the

sflea. and ey s replaced

fRame manner using, time translation (7) and the
projective group (&) This solution hecomes

-1 =1.3 3.3 oy 1.7 )

=Y
- |/s
Figure 3b. Trajectory after projective transfor-
mation. Note the region bounded in space.

14. (3D, 7 = 5/3)

p(r.0.6.1) = [(t = 7)(1 + a(t — 7))] "+

x r{po + p18in”0)
r
2s{[t— 7+ 1/(25)]> — 1/(45%)}
ar
A T

u(r.f,¢,1) =

v(r,0,¢6.t)=0

e b2
w(r.0,¢,1) = :tl [‘“ Tu(b + 2) (8inf)

4 po + pisin°é
1/2
_ apao + a
(po + prsm®O)b+2—a)  b+2- a]

,
X T - T F 120 - 1/(4s%))
1 [ALT; (sing)**?
pu + msin®l

T(r.0.6.1)= ar

am 1
- (po + pysin®0)(b+ 2)(b+ 2 - a) + (b+2- u)]

! 2
' l,.- {{t -+ 1/(24)) - 1/(4&""”] '

The projective group has introduced anather zera
on the plot of material trajectories, just as Figure
Ja went into Figure 3b. This solution therefore
has a bounded portion which involves a point ex-
plosion that spins outward, stops expanding and
then collapses back onto itsell as it continues tao
apin



6. Boundary conditions

The analytic solutions as given above contain
no boundary conditions, which must be taken
into account for numerical solutions. There are
two approaches to this concern. The first and
simplest is to consider a finite region initialized
with the properties of any of the analvtic solu-
tions with no consideration of special boundary
conditions. In this approach the evolution at the
boundary immediately deviates from the analytic
solution, and a rarefaction wave propagates into
the material of interest. The solution is valid only
in the region which has not felt this rarcfaction
wave. This approach, while simplest to imple-
ment, causes the region of validity to shrink as
the problem evolves.

The secoud approach is to apply the correct
boundary conditions at the edge of the problem.
This is immediate if the calculation is Eulerian.
For a Lagrangian calculation one must calculate
the location of the boundary at all times and the
appror-riate material properties for that location
must ¢ imposed. One concern with this ap-
proac is that small errors made iu these bound-
ary conditions can propagate inlo the problem
and confuse the investigation of internally gener-
ated errors. For this reason we g nerally use the
first and simplest approach. More general discus-
sions of the treatment of boundary conditions can
be found in Reference. 2 and 4.

7. Sunnnary

In this work we investigated the Lie group
invarian-e properties of the 3.1 hydrodynamies
equations, including nonlinear conduction and an
arbitrary energy source. Using these properties
we constructed preferred coordinate systems in
which the PDE's are transformed into QDS

This procedure is therefore a deterministic
method for constructing similarity solutions, and
includes dimensional analysis as a subset. The
reduced ODE’s have been solved for a few cases
to provide analytic solutions to multidimensional
hydrodynamics. These solutions can be used as
numerical benchmarks for hydro codes.

We also demonstrated the property of trans-
formation of solutions into new solutions using
the global transformations of the allowed Lie groups.
In particular, the use of the projective transfor-
mation generates nontrivial solutions from triv-
ial ones, and can also provide quite complicated
time-dependent solutions such as the given 3-D
spinning/expansion/collapse solution, Solution 14.
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